

Life at the Cell and Below-Cell Level. The Hidden History of a Fundamental Revolution in Biology

by Gilbert N. Ling, Ph.D.

> Pacific Press 2001

Contents

Preface	i
Answers to Readers's Queries (Read First!)	viii
Introduction	1
1. How It Began on the Wrong Foot—Perhaps Inescapably	5
2. The Same Mistake Repeated in Cell Physiology	8
3. How the Membrane Theory Began	10
 4. Evidence for a Cell Membrane Covering All Living Cells 4.1 From studies of cell volume changes and solute permeability (1) A semipermeable diffusion barrier at the cell surface 14 	14 14
(2) Plasmolysis	14
(3) Transient and sustained volume changes(4) Membrane regeneration4.2 From Bernstein's membrane theory of cellular	16 18
electric potentials 4.3 From Donnan's theory of ionic distribution and membrane potential	21 23
5. Evidence for the Cell Content as a Dilute Solution	26
5.1 Early evidence for free cell water 5.2 Early evidence for free cell K ⁺	26 26
6. Colloid, the Brain Child of a Chemist 6.1 Colloid, the namesake of gelatin and a cogent model	29
for protoplasm 6.2 Coacervates (1) History (2) Bungenberg de Jong's two views	29 31 31 31
(3) Coacervate and protoplasm(4) Coacervate and the living cell	33 34
7. Legacy of the Nearly Forgotten Pioneers	35
8. Aftermath of the Rout 8.1 The tiny Hungarian enclave under E. Ernst 8.2 The Leningrad school led by Nasonov and Troshin	40 40 41
9 Troshin's Sorntion Theory for Solute Distribution	43

10. Ling's Fixed Charge Hypothesis	47
10.1 A theory of selective accumulation of K ⁺ over Na ⁺	48
(1) Enhancement of counter-ion (or neutral molecules)	
association with site fixation	48
(2) The salt-linkage hypothesis and a critical role for ATP	50
(3) The 1952 electrostatic model for the selective	
accumulation of K ⁺ over Na ⁺	50
10.2 Experimental verifications of the LFCH (and parts of AIH)	52
(1) Cytoplasm rather than the cell membrane as the seat	
of selective K+ accumulation (and Na+ exclusion)	53
(2) Confirming the salt-linkage hypothesis for past	
failures to demonstrate selective adsorption of K ⁺	FF
on isolated proteins	55 56
(3) The great majority of cell K ⁺ is not free	56 56
(3.1) Mobility of intracellular K ⁺ (3.2) From X-ray absorption-edge fine structure	60
(3.2) From λ -ray absorption-edge line structure (3.3) K^{+} activity measured in living cells with a	00
K ⁺ -specific ion-sensitive microelectrode	60
(4) Cell K ⁺ adsorbed on β- and γ-carboxyl groups <i>one-on-one</i>	00
and in close contact	62
(4.1) K ⁺ adsorption follows the characteristics	0 =
of a Langmuir adsorption isotherm	62
(4.2) K ⁺ adsorption on β- and γ-carboxyl groups	64
(5) In striated muscle cells, the K ⁺ -adsorbing β- and	
γ-carboxyl groups belong mostly to myosin	66
(6) Quantitative relationship between adsorbed K ⁺ and ATP	69
(7) A summary of Section 10.2	71
11. The Polarized Multilayer Theory of Cell Water	74
11.1 Background	74
11.2 Polarized multilayer theory of cell water and its	
world-wide confirmation	75
11.3 Theoretical and practical extensions of the PM theory	
(and confirmations)	81
(1) The invention of MRI	81
(2) What makes gelatin unique leads to a new definition	
of colloid	84
(3) A new hypothesis of coacerv ate based on the PM theory	85
(4) A quantitative theory of solute distribution	
(exclusion) in cell water and model system and its	00
experimental verification (5) A possible square for the lower g value for Na ⁺	90
 (5) A possible cause for the lower q-value for Na⁺ (salts) in cell water than in extrovert models 	99
(6) Answer to A.V. Hill's once-widely-accepted proof	99
of free cell water and of free cell K ⁺	100
(7) Osmotic cell volume control	101
(7.1) What reduces the intracellular water activity	
to match that of a Ringer's solution?	102
(7.2) Reversible osmotic shrinkage of solutions	-
of an extrovert model in dialysis sacs	
immersed in concentrated solutions of	
substances to which the sac membrane is	
fully permeable	105
12. The Membrane-Pump Theory and Grave Contradictions	109
13. The Physico-chemical Makeup of the Cell Membrane	115
13.1 Background	115
(1) The membrane theory	115
(2) LFCH (and Al Hypothesis)	118
13.2 Ionic permeation	119
13.3 Water traffic into and out of living cells is bulk-phase	
limited	123
13.4 Permeability of living cells to water is orders of	
magnitudes faster than that of phospholipid bilayers	126

13.5 Interfacial tension of living cell is too low to match that of a phospholipid layer	126
13.6 Ionophores strongly enhance K ⁺ permeability through authentic continuous phospholipid bilayer but no	
impact on the K ⁺ permeability of cell membrane of	
virtually all living cells investigated 13.7 Strongly polarized-and-oriented water in lieu of	129
phospholipid bilayer	131
14. The Living State: Electronic Mechanisms for its Maintenance	
and Control	135
14.1 The launching of the association-induction hypothesis (1) Prelude	136
(2) The <i>c-value</i> and a quantitative theory for the control	140
of the rank order of ionic adsorption (3) The <i>c-value</i> analogue and its control of protein	140
folding vs water polarization	143
(3.1) The control of the secondary structure	
of proteins	144
(3.2) The control of the physical state of the	
bulk-phase water	147
14.2 What distinguishes life from death at the cell and	
below-cell level? The new concept of the living state	148
(1) The living state	148
(2) The elemental living machine(3) What distinguishes the <i>dead state</i> from the <i>active</i>	152
living stated	154
(4) What does food provide: energy or negative entropy?	155
14.3 Electronic mechanisms of remote, one-on-many control	156
(1) Electronic induction in proteins	158
(2) Cooperative interaction as the basis for abrupt	
and coherent transitions between stable states	164
(3) The classification of drugs and other cardinal	407
adsorbents: EWC, EDC and EIC	167 168
(4) ATP, the Queen of cardinal adsorbents, as an EWC(5) What do drugs and other cardinal adsorbents do?	170
(6) How cardinal adsorbents produce across-the-board	170
uniform electron-density change of many proximal	
functional groups	171
(7) Multiple control of single enzyme sites and	
"gangs" of pharmacological "effector sites"	175
15. Physiological Activities: Electronic Mechanisms and	
Their Control by ATP, Drugs, Hormones and Other Cardinal Adsorbents	179
15.1 Selective solute distribution in living cells:	179
cooperativity and control	180
(1) K ⁺ , Na ⁺ and Mg ²⁺ accumulation in living cells	180
(2) Control of the solvency of cell water by ATP	183
(3) The control of the rank order in alkali-metal	
ion adsorption by ouabain	186
(4) Control of D-glucose and glycine distribution	400
by insulin	192
15.2 The control of ion permeability (1) Na+efflux in normal and in IAA-poisoned muscle cells	194 195
(2) The influence of ouabain on the rank order of the	193
strengths of alkali-metal ion adsorption on cell	
surface anionic sites	198
15.3 Salt-ion-induced swelling of normal and injured cells	200
(1) Cell swelling in isotonic KC1	200
(2) Injury-induced cell swelling in isotonic NaCl	201

15.4 True active transport across bifacial epithelial cell	
layers and other bifacial systems	203
(1) Active Na ⁺ transport across frog skin	205
(2) Active R+ transport into <i>Nitella</i> cell sap	207
15.5 The resting potential	209
(1) Historic background 209	200
(1.1) The membrane potential theory and	
modifications	209
(1.1.1) The ionic theory	210
(1.1.2) The electrogenic pump theory	212
(1.2) Phase-boundary potential theories	213
(1.2.1) Baur's ion adsorption potential theory	213
(1.2.2) Beutner's phase boundary potential	
theory	214
(1.2.3) Horovitz's (and Nicolsky's) theories	
of glass electrode potentials	215
(2) The close-contact surface adsorption (CSA)	
theory of cellular electrical potentials	216
(2.1) The importance of close-contact once more	217
(2.2) Out of the union of two failed models for	
the the membrane potential, a super-model	
for the close-contact surface adsorption	
potential	218
(2.2.1) Both model and living cell show	210
similar rank order of sensitivity	
to alkali-metal ions	218
	210
(2.2.2) Both model and living cell are	040
indifferent to external Cl	219
(2.2.3) Both model and living cell	450
demonstrate an approximately	150
times greater sensitivity to H ⁺	
than to K [⁺]	219
(2.2.4) Both model and living cell are	
indifferent to external Mg ²⁺	219
(2.3) The original equation for the resting	
potential	220
(2.4) Edelmann's deciding experiment	221
(2.5) Control of the resting potential	221
(2.5.1) Control by ouabain and other EDC's	
by raising the c-value of surface	
β- and y-carboxyl groups	222
(2.5.2) Control by adrenaline as an EWC	
by lowering the c-value of surface	
β- and γ-carboxyl groups	223
15.6 The action potential	224
(1) Hodgkin-Huxley's theory of action potential	225
(1.1) No standing Na ⁺ potential	225
(1.2) Na channel not specific to Na ⁺	226
(2) The close-contact surface adsorption (CSA) theory	
of action potential	226
(2.1) The identification of the anionic groups	
mediating ionic permeation and generating	
the resting potential as β- and γ-carboxyl	
groups carried on cell surface proteins	229
(2.2) The selective preference for ions of the cell	
surface (β- and γ-carboxyl groups is mutable,	
rather than fixed as in the ionic theory	229
(2.3) The anionic groups mediating the entry of	223
Na ⁺ into squid axons during an action	
potential are the same β- and γ-carboxyl	000
groups but with a much higher c-value	230
(2.4) Swelling of nerve fiber accompanying	
an action potential	230

(2.5) The propagated c-value increase at the	
surface β- and γ-carboxyl groups goes	
pari passu with the depolarization of	20.4
cell surface water molecules	231
16. Summary Plus	233
16.1 Early history	233
16.2 The membrane (pump) theory	235
16.3 Early protoplasm-oriented cell physiologists and their	226
contributions 16.4 Ling's fixed charge hypothesis (LFCH)	236 237
16.5 The polarized multilayer (PM) theory of cell water	239
16.6 The association-induction hypothesis proper	242
(1) The resting living state	242
(1.1) The resting living state as a (metastable)	
equilibrium state	242
(1.2) The resting living state as a	
low-entropy state	243
(1.3) Do the major components of the living cell	
exist in a different physical state	
or conformation?	243
(1.3.1) Conformation of hemoglobin in red	
blood cells from K ⁺ , Na ⁺ distribution	243
(1.3.2) Conformation of myosin in frog	
muscle cells from nonelectrolyte	
distribution	245
(1.3.3) Conformation of myosin and actin	
in frog muscle cells from vapor sorption	245
(1.4) In maintaining the resting living state ATP	
is indispensable	246
(1.5) Where does the excess (cell) water-to-(cell)	
water interaction energy in the resting	
living cell originate?	246
(2) Global coherence and internal connectedness in	
protoplasm	248
(2.1) Native hemoglobin in vitro	248
(2.2) NaOH-denatured hemoglobin in vitro	248
(2.3) Muscle proteins in vivo	249
(3) Interpretation of the four classic physiological	
manifestations	250
(3.1) Solute distribution	250
(3.2) Solute permeability	251
(3.3) Cell volume control	252
(3.4) Resting potential	253
(4) Physiological activities as reversible cooperative	
transitions mediated by inductive effects	254
(4.1) c-value and c-value analogue: the keyboard	
of life	255
(4.2) Changes in the partners of ionic and hydrogen	
bonds as initiators as well as targets of	
transmitted inductive effect	257
(4.3) Classification of drugs and other cardinal	
adsorbents	258
(4.4) Maintenance and modulation of the resting	
living state by various cardinal adsorbents	258
(4.4.1) Maintenance of the living state by	0=0
ATP as EWC	258
(4.4.2) Modulation of the resting living	
state by ouabain as an EDC	259

(4.5) Cyclic reversible physiological activities (4.5.1) True active transport (4.5.2) The action potential	264 264 265
(5) The death state	266
(5.1) Life and death or protoplasm	267
(5.2) How protoplasm dies	267
(5.3) The anatomy of dead protoplasm or cell 16.7 A sketch of the history of Mankind's search for	268
understanding of life	270
17. Epilogue	272
Crossword puzzle and fox hunt: two models for scientific research	272
The secret of past success in major directional changes	273
Fragmentation and its impact on the future of science	275
A verified unifying theory to put Humpty-Dumpty together again How a dedicated biology teacher holds the key to a better future	276
for basic life science	277
"Science, The Endless Frontier" can be as shining and	
promising as ever	279
Appendix 1	282
Super-Glossary	288
List of Abbreviations	330
List of Figures, Tables and Equations	333
References	334
Author Index	351
Subject Index	356
Acknowledgments	366
About the Author	371